On the interaction of a charge with a thin plasma sheet

نویسنده

  • M. Bordag
چکیده

The interaction of the electromagnetic field with a two dimensional plasma sheet intended to describe the pi-electrons of a carbon nano-tube or a C60 molecule is investigated. By integrating out first the displacement field of the plasma or first the electromagnetic field different representations for quantities like the Casimir energy are derived which are shown to be consistent with one another. Starting from the covariant gauge for the electromagnetic field it is shown that the matching conditions to which the presence of the plasma sheet can be reduced are different from the commonly used ones. The difference in the treatments does not show up in the Casimir force between two parallel sheets, but it is present in the Casimir-Polder force between a charge or a neutral atom and a sheet. At once, since the plasma sheet is a regularization of the conductor boundary conditions, this sheds light on the difference in physics found earlier in the realization of conductor boundary conditions as ’thin’ or ’thick’ boundary conditions in Phys.Rev.D70(2004)085010.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compressive and rarefactive dust-ion acoustic solitary waves in four components ‎quantum plasma with dust-charge variation

Based on quantum hydrodynamics theory (QHD), the propagation of nonlinear quantum dust-ion acoustic (QDIA) solitary waves in a ‎collision-less, unmagnetized four component quantum plasma consisting of electrons, positrons, ions and stationary negatively charged ‎dust grains with dust charge variation is investigated using reductive perturbation method. The charging current to the dust grains ca...

متن کامل

TATB Interaction with Carbon Nanocone and Nanocone Sheet: A Comprehensive Computational Study

In this study 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) interaction with carbon nanocone(NC) and nanocone Sheet (NCS) was evaluated by density functional theory. The calculated thermodynamic parameters including Gibbs free energy changes and Enthalpy alterations showed the interaction of TATB with the both nanostructures are exothermic, spontaneous, experimentally possible ...

متن کامل

Experimental and Numerical Study of Preform Design in Multi Stage Deep Drawing of High Strength Thin Steel Sheet

In this paper, experimental results of a deep drawing process to produce a cylinder of high strength steel with a spherical head were compared with it’s simulation results and three proposal design types. Meanwhile, the amount of limiting draw ratio in some stages was determined. Accuracy and precision of the results of a finite element software to predicting the multi stage deep drawing proces...

متن کامل

Slip flow of an optically thin radiating non-Gray couple stress fluid past a stretching sheet

This paper addresses the combined effects of couple stresses, thermal radiation, viscous dissipation and slip condition on a free convective flow of a couple stress fluid induced by a vertical stretching sheet. The Cogley- Vincenti-Gilles equilibrium model is employed to include the effects of thermal radiation in the study. The governing boundary layer equations are transformed into a system o...

متن کامل

A Study of Bit Condition for Generation Rx -Mode Waves: Interaction of Particles with Z/UH-Mode Waves

Interactions of charge particles with electromagnetic waves have important effects (linear and nonlinear) on the propagation of electromagnetic waves, and it can somewhat play a role in generation of the new mode waves. Besides, the particle energies can play an important role in causing instability in plasma. The values of parallel energy of the particles have been calculated so that they can ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008